

OPPORTUNITIES FOR USE OF BIOSENSING IN AGRICULTURAL QUARANTINE

Dr. Nurjanah 2nd ASEAN Diagnosticians Forum Centara Grand Hotel at Central Ladprao, Bangkok, Thailand 20–21 August 2019

♥ Barantan_RI ┫ Badan Karantina Pertanian ∰ http://karantina.pertanian.go.id

Biosensors For Plant and Animal Pest and Diseases Detection

- Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country border.
- Current immunological techniques used to detect pathogens in plant include ELISA and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as PCR and real time PCR for pathogen identification and detection.
- However these methodologies are time-consuming and require complex instruments, being not suitable for insitu analysis.

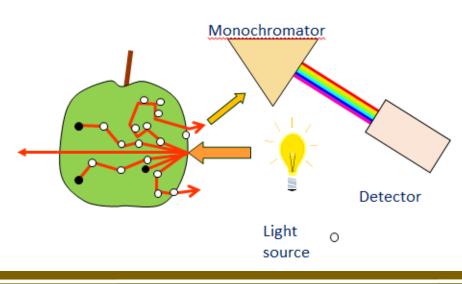
One of the main risks of fresh **fruit trade** (exported and imported) is the presence of fruit fly larvae in fresh fruit. The existence of these larvae has the potential to develop into adults and infest fresh fruit products in destination countries, especially in Indonesia.

Detection by Morfologyand Biomolecular

There is strong interest for developing **biosensing systems** for **early detection** both for plant and animal pest & diseases with high sensitivity and specificity.

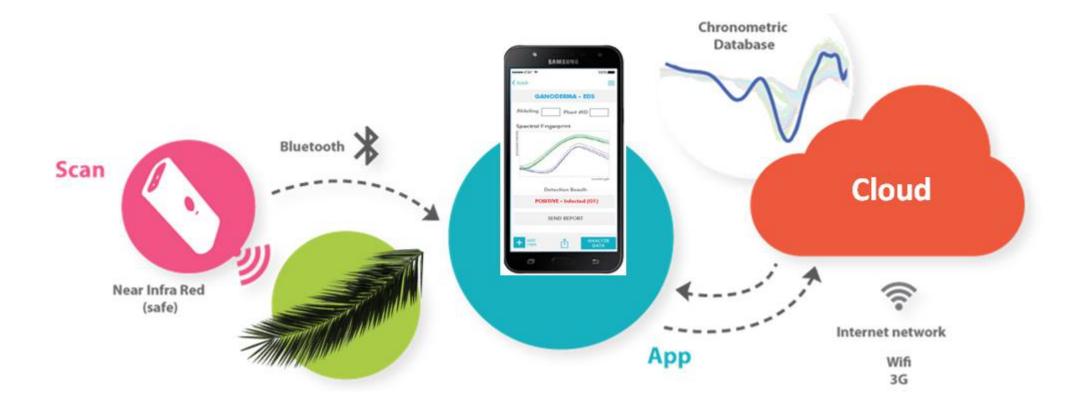
Barantan_RI Badan Karantina Pertanian http://karantina.pertanian.go.id

Biosensors Methods


- Near Infrared Spectroscopy
- Fluorescence (FL spectroscopy & FL Imaging)
- Ultrasonic (Proposed by Center Diagrostic laboratory of IAQA)
- Thermal sensor
- Remote sensing
- Electrochemistry and photonic
- Imaging sensor

Near Infrared Spectroscopy

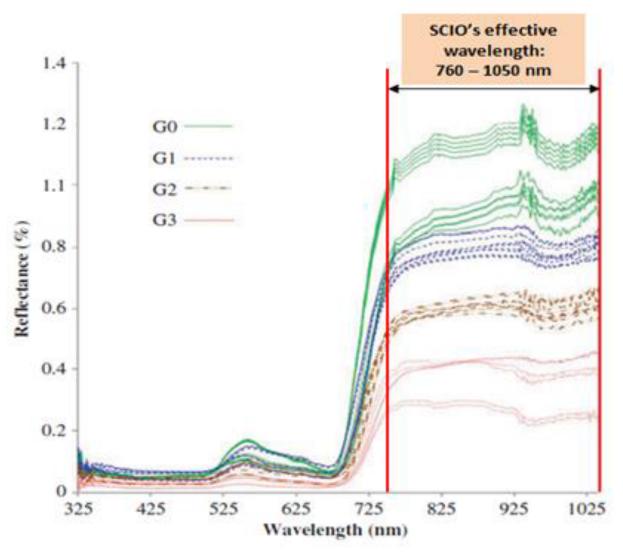
- NIR works which **specific organic molecules** absorb **specific wavelengths** of NIR (near infrared) light energy.
- The absorptions are directly **correlated** with the **concentration of the organic** \bullet molecules.
- The NIR is dependent upon the wet chemistry methods to attain the linear relationship between the molecular absorptions and the actual constituent concentrations.


Near Infrared Spectroscopy Advantages :

- \triangleright Real-time analysis
- \blacktriangleright Measure multiple constituents simultaneously
- \triangleright Non-destructive testing
- \succ No chemical waste stream, environmentally friendly
- Less sample waste
- Decrease operation costs

Barantan R

Fast prediction of chemical content non destructive based by NIR spectroscopy Near Infrared


NTIN.

 ✓ Barantan_RI

 f Badan Karantina Pertanian
 m http://karantina.pertanian.go.id

" BERSAMA ANDA MELINDUNGI NEGERI "

Representative spectral signatures of healthy (G0) and Ganoderma-infected (G1, G2, and G3) leaf samples. (Liaghat*et al., 2014).*

Barantan_RI
 Badan Karantina Pertanian
 http://karantina.pertanian.go.id

Table 1 Examples of studies on plant disease detection using spectroscopic techniques.

Plant	Disease/	Statistical Methods	Optimum spectral	Reference	
	Damage		range		
Citrus	Citrus canker		452, 685 and 735nm	Belasque et al.	
				(2008)	
Rice	Infested with brown	-	737–925nm	Yang and Cheng	
	planthopper			(2001)	
Wheat	Powdery mildew and	Analysis of variance,	490nm to780nm, 510nm	Graeff et al. (2006)	
	take-all disease	correlation and	to780nm, 516nm		
		regression analysis	to1300nm		
			and 540nm to1300 nm		
Rice	Brown planthopper	Linear regression	426nm	Yang et al. (2007)	
	and leaffolder	models			
	infestation				
Kiwifruit	Gray mold, Sclerotinia	Principal component	-	Costa et al. (2007)	
	rot	analysis			
Wheat	Yellow rust	Regression	-	Huang et al. (2007)	
Tomato	Leaf miner damage		800 to 1100 nm,	Xu et al. (2007)	
			1450 and 1900nm		
Grapevine	Grapevine leafroll	Discriminant analysis	752, 684 and 970nm	Naidu et al. (2009)	
	disease				

BARAN

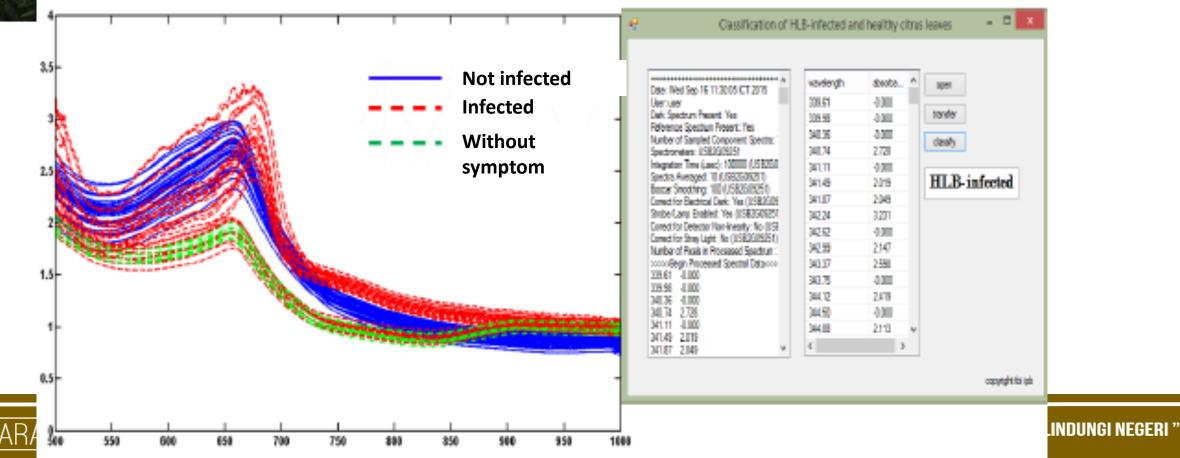
NGI NEGERI "

Table 1. Application of Spectroscopy to fungi and mycotoxin measurements

Technique Sample Detection		Detection	Wavelength/wavenumber range	Chemometrics	Year	Ref.
FTIR		Ochratoxin A	7,500-400 cm ⁻¹	PLS	2013	[7]
Mid infrared FTIR-ATR	Corn	Fusarium graminearum	650-4,500 cm ⁻¹	PCA, PLS, KNN ^{a)}	2003	[41]
Mid infrared FTIR-ATR, DR	Corn	F. graminearum		PCA, PLS, KNN	2004	[44]
FTIR-DRS, ATRS	Wheat	F. graminearum	650-4,000 cm ⁻¹	MLR, PLS	2007	[1]
TIR, FTIR- PAS	Corn	A. flavus			1999	[24]
NIR, FTNIR	Maize, barley	Aflatoxin B1	400-2,500 nm, 1,112-2,500 nm	PLS	2009	[32]
NIR	Rice	A. flavus M3T8R4G3 aflatoxigenic strain	950-1650 nm	PLSR	2013	[69]
NIR	Maize	F. verticillioides	400-1100 nm		2005	[6]
NIR	Corn	fungal damage	900-1700 nm	LDA, MLP ^{b)}	2011	[72]
FTNIR	Maize	FB1 + FB2	650-2500 nm	PLS	2013	[22]
FTNIR	Wheat	DON	10000-4000 cm ⁻¹	PLS, LDA	2014	[23]
FTNIR	Corn meal	FB1 + FB2	650-2500 nm	PLS	2012	[20]
NIRT	Wheat	DON	570-1100 nm	PLS, PCA	2003	[56]
Raman	Maize	Aflatoxins	785 nm	MLR, PCR, PLSR	2014	[44]
SERS	Maize	Aflatoxins	785 nm	MLR, PCR, PLSR	2014	[45]

^{a)}K-Nearest-Neighbor

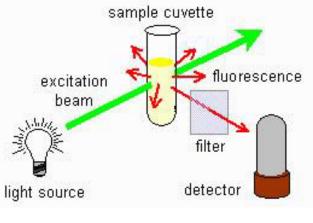
^{b)}Multi-Layer Perceptron


Barantan_RI Badan Karantina Pertanian http://karantina.pertanian.go.id

Visible near infrared spectroscopy for detection of Huanglongbingin citrus orchads

Spectroscopy Vis-NIR brand : OceanOptics. Wavelenght : 339-1022nm. The absorbance spectrum sample length at each measurement consisted of 2048 spectra

Some research have proven the ability of NIR spectroscopy for the detection of insects or insect damage in food commodities such as:


- blueberry (Peshlovet al.2009),
- cherry (Xing et al. 2008; Xing and Guyer 2008),
- fig (Burks et al.2000),
- green soybean (Sirisomboonetal. 2009),
- jujube (Wang et al.2010)

3arantan_RI 3adan Karantina Pertanian http://karantina.pertanian.go.id

Fluorescence (FL spectroscopy & FL Imaging)

FL spectroscopy

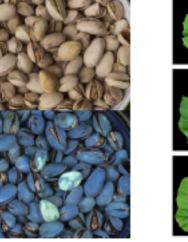
Advantages :

•Very simple

- •Specific to certain substances
- •Is quite sensitive and can detect
- •compound in low quantities

Disadvantages :

Not all substances can fluorescence so fluorescence-based technology is not always possible applied Excellence



Mould on citrus

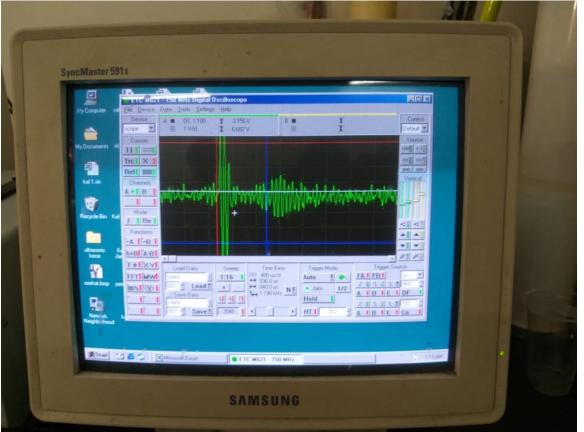
Mould on pistachio nuts

Standard F440/F520 images of mockcontrol, LD, and HD-D. dadantii inoculated zucchini leaves

FL Imaging

Ultrasonic

This technology is based on **the transmission of sound waves on the media** that are tested to then measure the propagation results of the energy emitted by the ultrasonic device.


Detection of fruit flies by Ultrasonic method

- Detection pattern: measure the reflection of electromagnetic waves generated by larvae and captured ultrasonic devices in the form of a magnitude graph
- Each fruit produces a different graph.
- > Data analysis (transformation: Matlab program):
 - Ultrasonic wave speed
 - Attenuation coefficient
 - Mo Value (Zero moment)
- Summary : The relationship between fruit damage due to fruit fly attack with ultrasonic wave characteristics

The use of ultrasonic devices to detect fruit fly larvae is done by placing the fruit on an ultrasonic device then the waves propagated through the fruit are read one by one in computer software in graphical form as raw data.

 ✓ Barantan_RI

 f Badan Karantina Pertanian
 m http://karantina.pertanian.go.id

" BERSAMA ANDA MELINDUNGI NEGERI "

The difference between healthy fruit and infested fruit in these parameters is measured based on differences in media density (fruit) which results in different energy waves absorption,

- for example for liquid media has a greater attenuation coefficient than solid media,
- so the rotten fruit attenuation coefficient should be more great compared to healthy fruit because rotten fruit texture is softer and nearly liquid.

Barantan_RI Badan Karantina Pertanian http://karantina.pertanian.go.id

IAQA Research Planning for Biosensors

	No	Research	Current Method	sensor detection indicator	Sensor type
		detection of plants affected by Quarantine			
		pest (detection of decreased levels of		Soil chemical properties,	Near Infrared (NIR)
	1	secondary metabolites due to plants	Visual	color response	Remote/imaging sensing
			Visual		Sensor network and machine
		detection of the presence of eggs and fruit	(Morfology and	Color response, fruit skin	vision bioimaging
	2	fly larvae in imported and exported fruit	morfomentry	texture, level of rot	(Fluorescence)
		Detection of seed / seed / fruit / bulbs in			
	3	the packaging	X ray	Color response	Fluorescence
					Fluorescene, opto, novel
		Nematodes detection in garlic bulb using	Morfology and		sensor/electrochemistry and
	4	fluorescence sensor	morfometry	Color response	photonic, remote sensing
					Fluorescene, opto, novel
		Detection of Radopholus similis from	Morfology and		sensor/electrochemistry and
	5	<i>Polyscias</i> sp. Root	morfometry	Color response	photonic, remote sensing
			Direct		Imaging sensor, optical
			inspection,		sensor (RGB, spectra sensor,
		Detection of Stenocarpella maydis of	Morfology and	the response of color,	thermal sensor, fluorescence
	6	import corn seed	morfometry	temperaturand humidity	imaging
			Direct		Imaging sensor, optical
			inspection,		sensor (RGB, spectra sensor,
		Detection of <i>Microcyclus ulei</i> of indutry raw	Morfology and	the response of color,	thermal sensor, fluorescence
	7	material from Brazil	morfometry	temperaturand humidity	imaging

Indonesia needs in this momentum

Director General of Indonesian Agriculcure Qurantine Agency (DG IAQA) is very concerned with biosensing

- In this forum, we are looking for collaborative partners, for example :
 - Short training,
 - Scientific exchange,
 - Master or doctoral degrees, etc.

3arantan_RI 3adan Karantina Pertanian http://karantina.pertanian.go.id

